The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects
نویسندگان
چکیده
Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from 'promiscuous' activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments.
منابع مشابه
The effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzymes in selenium and/or iodine deficient rats
Objective(s): Particularly in developing countries, selenium and/or iodine deficiencies are encountered and use of pesticides in agriculture are not well-controlled. Fenvalerate is a pyrethroid insectide used in agriculture and has applications against a wide range of pests. This study was designed to evaluate the effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzyme act...
متن کاملگلوتاتیون ترانسفرازها و مقاومت به حشره کش ها در حشرات ناقل بیماری ها
Glutathione transferases(GSTs) are a diverse family of enzymes found ubiquitously in aerobic organisms. They play a central role in the detoxification of both endogenous and xenobiotic compounds and are also involved in intracellular transport, biosynthesis of hormones and protection against oxidative stress. Interest in insect GSTs has primarily focused on their role in insecticide resistanc...
متن کاملThe gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation
The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut...
متن کاملAccelerated Cytotoxicity Mechanism Screening
By discovering how chemical compounds/xenobiotics cytotoxicity is affected when their metabolic pathways are inhibited or activated, the metabolic pathways that activate versus detoxify chemical compound can be identified. Reactive metabolites contributing to cytotoxicity can also be identified. In this lecture, the pretreatment of inhibitors and activators of xenobiotic metabolizing enzymes as...
متن کاملQualitative and quantitative changes in glutathione S-transferases in the mosquito Anopheles gambiae confer DDT-resistance.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are a multigene family of dimeric multifunctional proteins that play a central role in detoxication of xenobiotic compounds including drugs, herbicides and insecticides [ 11. Based on extensively characterized physicochemical and immunological properties, the mammalian GSTs have been grouped into at least four distinct classes: Alpha, Mu, Pi and Th...
متن کامل